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Preface

The study of toric varieties, often referred to as toric geometry, goes back to 1970, when
the first formal definition of a toric variety by Demazure appeared in [Dem70]. In
the following years, toric varieties appeared in publications in different areas, but a
work solely dedicated to toric geometry had yet to be written. This happened in 1973
independently in the book [KKMS73] by Kempf, Knudsen, Mumford and Saint-Donat
and in the article [MO75] by Oda and Miyake, presented in 1973 but not published until
1975. In the introduction to [KKMS73], Mumford already notices that toric varieties
provide a very useful source of examples of algebraic varieties. Apart from applications
of toric varieties in recent theoretical physics (see for example [CK99]), this is a key
importance of toric varieties. They provide examples of algebraic varieties that allow
concrete computations due to their combinatorial nature and therefore serve as a testing
ground for theories. The research on toric varieties peaked in 1978, when Danilov
published [Dan78], which is a detailed introduction to toric geometry that surveys the
results made by others, but also introduces a lot of new ideas to the topic. Another
important work appeared in 1993, when Fulton condensed his lectures on toric varieties
into the book [Ful93]. In 2011, a very modern treatment of toric varieties was published
by Cox, Little and Schenck in their book [CLS11], which brings the research of 40 years
together into a great book, giving a detailed account on the historical development of
the field as well.

The main topic of this thesis goes back to [Ehl75], an article by Ehlers on toric varieties
from a time before the term “toric variety” has been established. Ehlers uses a math-
ematical language very unfamiliar from a modern point of view, as he discusses toric
varieties as complex manifolds, missing the algebro-geometric aspects. In his article,
Ehlers finds a linear basis of the homology groups H∗(XΣ) of certain toric varieties XΣ.
This result reappears in [Dan78] in a more standard language. Danilov proves the linear

4



Preface

basis for homology groups of smooth projective toric varieties. By Poincaré duality, this
yields a linear basis for the cohomology ring H∗(XΣ), which is in turn isomorphic to
the combinatorial Chow ringR(Σ) of the underlying polyhedral fan. This ring, directly
associated to the underlying fan, is the object of interest in this thesis. Our goal was to
prove the linear basis ofR(Σ), obtained using algebro-geometric methods by Danilov,
by directly looking at the combinatorial Chow ring. This would yield a new proof of
the basis theorem using algebraic combinatorics to discuss the combinatorial Chow
ring, instead of algebraic geometry to discuss the homology of the associated variety. A
first step in this direction was made in [Ful93], where Fulton decouples a combinatorial
condition of the fan from the projectivity of the variety. He noticed that the necessary
combinatorial condition holds in the projective case, but projectivity is not necessary to
prove the linear basis of the homology groups. To our surprise, this linear basis did not
reappear in [CLS11], although other results from the works of Danilov and Fulton on
the (co)homology of toric varieties are treated.

In this thesis, we take an algebraic combinatorics point of view and try to reprove and
generalize the linear basis theorem for the combinatorial Chow ringR(Σ) of a simplicial
polyhedral fan Σ. By noticing that Fulton’s combinatorial condition is equivalent to
shellability of the associated simplicial complex ∆(Σ), we formulate our propositions
in terms of shellable simplicial fans. We give algebraic proofs for the desired linear
generating set in all dimensions and its linear independence up to dimension 1. Though
we know from Danilov and Fulton that linear independence holds in higher dimensions
under additional assumptions, we were not able to find an algebraic proof for this, not
involving algebraic geometry of the associated variety.

The thesis is split into three chapters. We start with an introduction to toric geometry in
the first chapter. The introduction aims to be self-contained without getting entangled in
details of algebraic geometry. Thus, we take a very classical point of view on algebraic
geometry, avoiding more abstract concepts like sheaves and schemes. At some points
we see the disadvantages of this approach, for example when defining Spec(R), but the
great benefit is, that we can focus on the beautiful combinatorics and convex geometry
behind toric varieties. This focus is reflected in our definition of affine toric varieties, that
does not even mention the embedded torus and its action on the variety. Nevertheless,
we discuss the connection to the classical approach of toric varieties as torus embeddings
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in several remarks. Throughout the thesis, we provide examples to clarify the abstract
concepts and fill gaps where proofs are omitted.

The second chapter is the original work of this thesis. We define the combinatorial
Chow ringR(Σ) of a simplicial fan Σ in the most general setting and generalize some
properties already mentioned in Ewald’s book [Ewa96]. As a sanity check for our general
definition ofR(Σ) we make a quick digression to study the combinatorial Chow ring
of products of simplicial fans, which works out nicely as expected from the connection
to the Stanley-Reisner ring of the associated simplicial complex. We go on to define
shellability of simplicial fans and prove the linear generators of R(Σ) in the shellable
case. We prove the linear independence of the generators up to dimension one and
formulate our conjecture for higher dimensions.

In the third and final chapter we come back to toric geometry and provide the algebro-
geometric context of our work. We show that Fulton’s condition is really shellability and
from that extract a linear basis for the homology groups of toric varieties given by com-
plete smooth shellable fans. Using Poincaré duality and a result from [Dan78], we verify
our conjecture under the additional assumption of completeness.

All of our examples will take place in Rn, where we have the standard basis e1, . . . , en

with dual basis e∗1 , . . . , e∗n defined by 〈e∗i , ej〉 = δij, where δij denotes the Kronecker delta
and 〈−,−〉 denotes the dual pairing (Rn)∗ × Rn → R, ( f , v) 7→ f (v). As usual in
combinatorics, we abbreviate subsets of [n] = {1, 2, . . . , n} by strings of elements, e.g.
13 = {1, 3}, when it is clear from the context that we mean the subset {1, 3} and not
the number thirteen. All rings in this thesis are commutative rings with 1 and ring
homomorphisms map 1 to 1. All C-algebras are associative C-algebras with 1 and
C-algebra homomorphisms also map 1 to 1. Homology and cohomology groups are
taken to have integral coefficients if not mentioned otherwise.
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1 Introduction to Toric Geometry

In this chapter we give an introduction to toric geometry, including the necessary
background in algebraic geometry. We will not prove every statement, but instead look
at examples where they help to grasp the abstract concepts. For details, we refer to
[CLO07] and [CLS11], which are textbooks on algebraic geometry and toric geometry,
respectively.

1.1 Affine Varieties

To understand toric varieties in general, we need to consider affine toric varieties first.
Afterwards we will be able to glue these affine varieties along certain open subsets to
obtain toric varieties. We start with the classical definitions of affine algebraic varieties
and their coordinate rings.

Definition 1.1. An affine variety V ⊆ Cn is the zero-locus of finitely many polynomials
f1, f2, . . . , fs ∈ C[x1, . . . , xn],

V =
{

p ∈ Cn ∣∣ f1(p) = f2(p) = · · · = fs(p) = 0
}

.

Since C[x1, . . . , xn] is a Noetherian ring, every ideal I ⊆ C[x1, . . . , xn] is finitely generated,
so the set of all points p ∈ Cn with f (p) = 0 for all f ∈ I is an affine variety V(I).
Conversely, given an affine variety V ⊆ Cn, the polynomials vanishing on V form an
ideal I(V). While for every affine variety V the affine variety V(I(V)) is always V itself,
the ideal I(V(I)) is different from I in general. The relationship is given by Hilbert’s
Nullstellensatz.
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1 Introduction to Toric Geometry

Theorem 1.2 (Hilbert’s Nullstellensatz, [CLO07, Chapter 4, §2, Theorem 6]). Let I be an
ideal in the polynomial ring C[x1, . . . , xn], then I(V(I)) =

√
I.

Here
√

I is the radical of I, consisting of all polynomials f , such that f k ∈ I for some
positive integer k.

Example 1.3. Let f = x2 + y2 − 1 ∈ C[x, y, z], then V = V( f ) is the affine variety in C3

consisting of all points (x, y, z) ∈ C3 such that x2 + y2 = 1. Intersecting V with R3 we
obtain the real part of an infinite cylinder as shown in Figure 1.1.

y

x

z

Figure 1.1: The real part of the affine variety V(x2 + y2 − 1) ⊆ C3.

For g = (x2 + y2 − 1)3, we obtain a different ideal 〈g〉 ( 〈 f 〉, but the same variety
V(g) = V( f ). In fact, 〈 f 〉 is radical the radical of 〈g〉, so I(V) = 〈 f 〉. ♦

The Zariski Topology. In addition to the standard topology on an affine variety
V ⊆ Cn induced by the standard topology on Cn, there is another useful topology
on affine varieties. The subvarieties of V (i.e., affine varieties in Cn that are contained in
V) form the collection of closed sets of a topology, called the Zariski topology on V. Since
subvarieties are also closed in the standard topology, the Zariski topology is coarser
than the standard topology. In fact, the Zariski topology is usually not even Hausdorff.
Consider V = C, the only subvarieties of V are finite point sets, so the Zariski topology
is the cofinite topology in this case, which is not Hausdorff.
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1 Introduction to Toric Geometry

Morphisms of Affine Varieties. A map φ : V → W between affine varieties that is
given by polynomials in each coordinate is called a morphism of affine varieties. Affine
varieties together with morphisms of affine varieties form a category. In particular, we
say that two affine varieties V and W are isomorphic if there exist morphisms φ : V →W
and ψ : W → V, such that ψ ◦ φ = idV and φ ◦ ψ = idW .

Coordinate Rings of Affine Varieties. To every affine variety V we associate a C-
algebra with elements corresponding to morphisms V → C.

Definition 1.4. Given an affine variety V ⊆ Cn, we define the coordinate ring of V to be
the C-algebra C[V] = C[x1, . . . , xn]/I(V).

A polynomial f ∈ C[x1, . . . , xn] corresponds to a polynomial map f : Cn → C, so it gives
a morphism f |V : V → C. For two polynomials f and g we have f |V = g|V if and only if
f − g ∈ I(V). Hence, elements of C[V] correspond to morphisms V → C. A different
formulation of Hilbert’s Nullstellensatz tells us that the points of V are in one to one
correspondence with maximal ideals in C[V], where p ∈ V corresponds to the ideal
consisting of all f ∈ C[V] vanishing on p, see [CLO07, Chapter 5, §4, Theorem 5]. Since
every morphism φ : V → W of affine varieties induces a C-algebra homomorphism
φ∗ : C[W] → C[V], f 7→ f ◦ φ, we have a contravariant functor from the category of
affine varieties to the category of C-algebras, that assigns to each affine variety V its
coordinate ring C[V] and to each morphism φ : V → W the induced homomorphism
φ∗ : C[W]→ C[V]. The important property of this functor is, that a morphism of affine
varieties φ : V → W is an isomorphism if and only if φ∗ : C[W] → C[V] is an isomor-
phism, see [CLO07, Chapter 5, §4, Theorem 9]. Thus, we are able to reconstruct an affine
variety V from its coordinate ring C[V] up to isomorphism.

The Spectrum of a C-Algebra. Every coordinate ring is a finitely generated C-algebra
with no non-zero nilpotents, since it is a quotient of C[x1, . . . , xn] by a radical ideal
(i.e., an ideal with

√
I = I). On the other hand, given a finitely generated C-algebra

R with no non-zero nilpotents, we can always construct an affine variety V such that
C[V] ∼= R.
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1 Introduction to Toric Geometry

Let R be a finitely generated C-algebra with no non-zero nilpotents. Pick generators
f1, . . . , fr ∈ R and define a C-algebra homomorphism ϕ : C[x1, . . . , xr]→ R by xi 7→ fi.
Since ϕ is surjective, we have R ∼= C[x1, . . . , xr]/ ker ϕ, where ker ϕ is radical since R has
no non-zero nilpotents. Thus, V(ker ϕ) ⊆ Cr is an affine variety with coordinate ring
isomorphic to R.

The affine variety determined by a C-algebra R is called Spec(R). The reason for this
notation is that the set of maximal ideals of a ring is called its maximal spectrum. The
theory of schemes introduces a more general notion of varieties that would allow us to
directly define Spec(R) as a scheme, without the need to embed it in Cn like we did in
the previous construction. While it is calming to know that we could describe Spec(R)
without involving an arbitrary choice of generators of R, it is enough for our purposes
to set Spec(R) = V(ker ϕ) for a fixed choice of generators.

The Complex Torus. The multiplicative group (C∗)n is called the n-dimensional com-
plex torus. Our first step in the direction of toric geometry is to equip the complex torus
with the structure of an affine variety. Strictly speaking, (C∗)n is not an affine variety
according to Definition 1.1, since it cannot be expressed as the zero-locus of a finite
family of polynomials in C[x1, . . . , xn]. It rather is the complement of an affine variety,
namely (C∗)n = Cn \ V(x1x2 · · · xn). This allows us to construct an affine variety in
Cn ×C that projects to (C∗)n bijectively, which is a general construction we will revisit
when discussing localizations of coordinate rings in Section 1.5.

Let V = V(1− x1x2 . . . xny) ⊆ Cn ×C, where x1, . . . , xn are the coordinates of Cn and
y is the coordinate for the additional factor C. The projection Cn × C → Cn maps V
bijectively onto (C∗)n, equipping it with the structure of an affine variety. Using this
construction, we find the coordinate ring of the complex torus to be

C[(C∗)n] = C[x1, . . . , xn, y]/(1− x1x2 . . . xny) = C[x1, . . . , xn, 1/(x1x2 . . . xn)]

= C[x±1
1 , . . . , x±1

n ],

which is the ring of Laurent polynomials in n variables over C.

10



1 Introduction to Toric Geometry

1.2 Convex Polyhedral Cones

The heart of toric geometry lies in the fact, that toric varieties arise from a combinatorial
structure called a fan. In this section we will discuss cones, which are the building blocks
of fans and belong to affine toric varieties, which will in turn be the building blocks of
toric varieties.

Definition 1.5. A lattice N is a free abelian group of finite rank, i.e. N ∼= Zn. It is
contained in the real vector space NR = N ⊗R ∼= Rn. The dual lattice M given as
Hom(N, Z) ∼= Zn is contained in MR

∼= Rn, which is the dual vector space to NR.

We have a product 〈−,−〉 : MR × NR → R given by the usual dual pairing of vector
spaces. This will be our standard setting in the following sections, so M will always
be lattice with dual N and MR, NR their corresponding ambient real vector spaces.

Definition 1.6. A convex polyhedral cone in NR is a set of the form

σ = Cone(u1, . . . , uk) =

{
k

∑
i=1

riui

∣∣∣∣∣ ri ≥ 0

}
⊆ NR,

for some u1, . . . , uk ∈ NR. A convex polyhedral cone is called rational if all ui ∈ N.

Since “convex polyhedral cone” is a rather long term, we will usually use the word “cone”
and imply that we are talking about convex polyhedral cones.

Dual Cones. Given a cone σ ⊆ NR, we define the convex set

σ∨ = { v ∈ MR | 〈v, u〉 ≥ 0 for all u ∈ σ } .

This set is called the dual cone of σ, which is justified by the following proposition.

Proposition 1.7 ([Ewa96, Chapter V Theorem 2.1, Lemma 2.2, Theorem 2.9]). Given a
convex polyhedral cone σ ⊆ NR, its dual cone σ∨ ⊆ MR is again a convex polyhedral cone. We
have (σ∨)∨ = σ and σ∨ is rational if and only if σ is rational.
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1 Introduction to Toric Geometry

Example 1.8. Consider the lattice N = Z2 with ambient real vector space NR = R2. The
rational cone σ = Cone(2e1 + e2 , e2) ⊆ R2 is the intersection of two half-spaces given
by the inward pointing normal vectors e∗1 and −e∗1 + 2e∗2 . Thus, the dual cone is obtained
as σ∨ = Cone(e∗1 , −e∗1 + 2e∗2) ⊆ MR = R2, as illustrated in Figure 1.2. ♦

e2 2e1 + e2

σ

−e∗1 + 2e∗2

e∗1

σ∨

Figure 1.2: The cone σ = Cone(2e1 + e2 , e2) ⊆ R2 and its dual.

Using a description of σ as an intersection of half-spaces as we did in Example 1.8 is a
general construction to obtain the dual cone σ∨.

1.3 Semigroups and Semigroup Algebras

To obtain an affine variety from a cone, we will first construct a C-algebra from the
cone, that will serve as a coordinate ring. These algebras will be given by semi-
groups.

Definition 1.9. A semigroup is a subset S of a lattice M that is closed under addition and
contains 0. The semigroup S is said to be generated by a subset A ⊆ S, if

S = NA =

{
∑
a∈A

kaa

∣∣∣∣∣ ka ∈N, only finitely many ka 6= 0

}
.

The semigroup S is finitely generated if there is some finite set A generating S.

Proposition 1.10 (Gordan’s Lemma). If σ ⊆ NR is a rational convex polyhedral cone, then
Sσ = σ∨ ∩M is a finitely generated semigroup.

12



1 Introduction to Toric Geometry

Proof. The subset Sσ = σ∨ ∩M of M is a semigroup, since both σ∨ and M contain 0 and
are closed under addition. Since σ is a rational cone, we know that σ∨ is a rational cone
as well by Proposition 1.7. Thus σ∨ = Cone(v1, . . . , vs) for some vi ∈ M. Now consider
the set

K =

{
s

∑
i=1

tivi

∣∣∣∣∣ ti ∈ [0, 1]

}
⊆ σ∨.

Since K is bounded, K ∩M is finite. We will show that Sσ is generated by K ∩M.

Take any v ∈ Sσ = σ∨ ∩M, then v = ∑s
i=1 rivi for some ri ≥ 0. We have

v =
s

∑
i=1
bricvi +

s

∑
i=1

(ri − bric)vi,

where brc denotes the integer part of a non-negative real number r.

Since v and the first summand are elements of M, the second summand is in M as well.
Since vi ∈ K ∩M, the first summand is in N(K ∩M). The second summand is in K since
ri − bric ≤ 1, thus v ∈N(K ∩M).

Example 1.8 (continuing from p. 12). We obtain a generating set of Sσ = σ∨ ∩Z2 as
K ∩M = {0 , e∗1 , e∗2 , 2e∗2 , −e∗1 + 2e∗2}, as shown in Figure 1.3. Since 2e∗2 is generated by
e∗2 , it can be omitted, hence Sσ = N {e∗1 , e∗2 , −e∗1 + 2e∗2}. ♦

−e∗1 + 2e∗2

e∗1

2e∗2

e∗2

0

σ∨

K

Figure 1.3: The generating set of the semigroup Sσ = σ∨ ∩M.

Remark 1.11. At this point it is unclear, why we are considering σ∨ ∩M instead of σ∩N.
After all, σ ∩ N is also a finitely generated semigroup that seems to be more closely
related to the cone σ. The reason for this is, that we want the faces of σ to correspond to
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1 Introduction to Toric Geometry

Zariski open subsets of the associated affine variety, so we can glue the cones of a fan
along these open subsets. In Proposition 1.22 we will see how this works out in detail.

Semigroup Algebras. Now we associate C-algebras to semigroups, which will then
allow us to define affine toric varieties.

Definition 1.12. Let S be a semigroup in the lattice M. The semigroup algebra C[S]
is given as a vector space with basis elements χm for all m ∈ S. The multiplication
in C[S] is defined by χmχm′ = χm+m′ . If S is generated by m1, . . . , ms, we write
C[S] = C[χm1 , . . . , χms ], where the relations are implicit in the definition of the mul-
tiplication.

Example 1.8 (continuing from p. 12). In the second part of Example 1.8 we constructed
the semigroup Sσ = N{e∗1 , e∗2 , −e∗1 + 2e∗2}. To this semigroup, we associate the C-
algebra C[Sσ] = C[χe∗1 , χe∗2 , χ−e∗1+2e∗2 ] which is isomorphic to C[x, y, x−1y2] by mapping
x 7→ χe∗1 and y 7→ χe∗2 . ♦

1.4 Affine Toric Varieties

Definition 1.13. An affine variety V is toric, if V = Spec(C[S]) for some finitely gener-
ated semigroup S. If V = Spec(C[Sσ]) for a rational cone σ, we write V = Uσ.

Remark 1.14. An affine toric variety V = Spec(C[S]) always contains a torus T ∼= (C∗)k

as a Zariski open subset. We will come back to this fact when discussing how localiza-
tions of C[S] correspond to Zariski open subsets of V. The characters χ : T → C form a
lattice isomorphic to ZS. In fact, we can define affine toric varieties using embedded
tori and their actions on V (see [CLS11, Definition 1.1.3]), which is the historic approach
that led to toric geometry.

We should note that not every affine toric variety comes from a cone. For example the
semigroup {0, 2, 3, 4, . . .} ⊆ Z can not come from a cone, since it contains 2 but not 1,
which is contained in Cone(2) = R≥0. Semigroups S that contain m, whenever km ∈ S
for some positive integer k are called saturated and those are exactly the semigroups that

14



1 Introduction to Toric Geometry

arise from cones. It turns out that an affine toric variety V = Spec(C[S]) is normal if and
only if S is saturated, so it comes from a cone.

Example 1.8 (continuing from p. 12). From C[Sσ] = C[χe∗1 , χe∗2 , χ−e∗1+2e∗2 ] we have

C[Sσ] ∼= C[x, y, x−1y2] ∼= C[x, y, z]/〈xz− y2〉,

so Uσ = Spec(C[Sσ]) is isomorphic to the affine variety V(xz− y2) in C3. We observe
that the relation xz = y2 corresponds to the linear relation e∗1 + (−e∗1 + 2e∗2) = 2e∗2
between the generators of Sσ. ♦

The previous observation generalizes to all affine toric varieties. For V = Spec(C[S]),
we can describe the ideal I such that V = V(I) in terms of the linear relations between
the generators of S.

Proposition 1.15. Let S ⊆ M be a semigroup with generators A = {m1 . . . , ms}, then
Spec(C[S]) = V(I) ⊆ Cs for the ideal

I =

〈
xa − xb

∣∣∣∣∣ a, b ∈Ns such that
s

∑
i=1

aimi =
s

∑
i=1

bimi

〉
, where xa = xa2

1 xa2
2 · · · x

as
s .

Proof. By our previous construction, we have Spec(C[S]) = V(ker ϕ) ⊆ Cs for the
homomorphism ϕ : C[x1, . . . , xs] → C[S] = C[χm1 , . . . , χms ], given by xi 7→ χmi . Let
xa − xb ∈ I, then

ϕ(xa − xb) = (χm1)a1 · · · (χms)as − (χm1)b1 · · · (χms)bs = χ∑s
i=1 aimi − χ∑s

i=1 bimi = 0,

so we have I ⊆ ker ϕ.

Now let f = ∑ caxa ∈ ker ϕ and define for any m ∈ S the set π(m) of multi-indices
a ∈Ns such that ∑s

i=1 aimi = m. We have

ϕ( f ) = ∑
m∈S

(
∑

a∈π(m)

ca

)
χm = 0,

15



1 Introduction to Toric Geometry

and therefore ∑a∈π(m) ca = 0 for all m ∈ S. It suffices to show that fm = ∑a∈π(m) caxa lies
in the ideal I for all m ∈ S. Let ca1 , . . . , cak be the non-zero coefficients in fm, then

fm =
k

∑
i=1

cai xai
= ca1

(
xa1 − xa2

)
+ (ca2 + ca1)

(
xa2 − xa3

)
+ (ca3 + ca2 + ca1)

(
xa3 − xa4

)
+ · · ·+

(
k

∑
i=1

cai

)(
xak − xa1

)
+

(
k

∑
i=1

cai

)
xa1

.

The last term vanishes, since ∑k
i=1 cai = 0, and all other terms are elements of I, so we

have ker ϕ ⊆ I.

Remark 1.16. Prime ideals generated by binomials are called toric ideals. We have seen
in Proposition 1.15 that every affine toric variety is given by a toric ideal: The ideal I
is evidently generated by binomials. To see that I is prime, note that C[M] is the ring
of Laurent polynomials in the χei , hence an integral domain. So C[S] ⊆ C[M] is an
integral domain as well and since C[S] ∼= C[x1, . . . , xs]/I, we see that I is prime. In fact,
V(I) is an affine toric variety if and only if I is a toric ideal. For a proof see [CLS11,
Theorem 1.1.17].

Our goal is to understand how affine toric varieties corresponding to cones in a fan are
glued together to a toric variety. Now that we understand how cones relate to affine
toric varieties, our next step is to understand how faces of cones correspond to certain
Zariski open subsets of the varieties.

1.5 Localizations of Coordinate Rings

Consider an affine variety V ⊆ Cn with coordinate ring C[V] = C[x1, . . . , xn]/I(V).
Assuming V is irreducible (i.e., C[V] is an integral domain, so it has a field of fractions
C(V)) we define the localization at f ∈ C[V] \ {0} by

C[V] f =

{
g
f k ∈ C(V)

∣∣∣∣ g ∈ C[V], k ≥ 0
}

= C[V][1/ f ].
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Proposition 1.17. Let V ⊆ Cn be an irreducible affine variety, f ∈ C[V] \ {0}, then

Spec(C[V] f ) = Vf := { p ∈ V | f (p) 6= 0 } .

Proof. As in our discussion of the complex torus, the Zariski open set Vf is not an
affine variety a priori. Though, we can use the same construction to find an affine
variety W ⊆ Cn ×C that projects bijectively onto Vf . Let I(V) = 〈 f1, . . . , fs〉 and define
W = V( f1, . . . , fs, 1− gy), where g ∈ C[x1, . . . , xn] represents f ∈ C[V]. The projection
Cn ×C→ Cn maps W bijectively onto Vf , equipping it with the structure of an affine
variety. Using this identification we obtain the coordinate ring

C[Vf ] = C[W] = C[x1, . . . , xn, y]/〈 f1, . . . , fs, 1− gy〉

= C[x1, . . . , xn, 1/g]/〈 f1, . . . , fs〉 = C[V][1/ f ] = C[V] f .

Remark 1.18. Given a finitely generated semigroup algebra C[S] = C[χm1 , . . . , χms ], we
have

C[S]χm1 ···χms = C[χm1 , . . . , χms , χ−m1−...−ms ] = C[χ±m1 , . . . , χ±ms ] = C[ZS],

so Spec(C[ZS]) is a Zariski open subset of the affine toric variety Spec(C[S]). Since
ZS ∼= Zk for some k ∈ N, we know that C[ZS] is the ring of Laurent polynomials in
k variables, so Spec(C[ZS]) ∼= (C∗)k. This is the torus contained in every affine toric
variety, as mentioned in Remark 1.14.

Example 1.8 (continuing from p. 12). We got Uσ = Spec(C[Sσ]) ∼= V(xz− y2) ⊆ C3 from
the semigroup algebra C[Sσ] = C[χe∗1 , χe∗2 , χ−e∗1+2e∗2 ] of the cone σ = Cone(2e∗1 + e∗2 , e∗2)
in R2. To find the embedded torus, we look at

C[ZSσ] = C[χe∗1 , χe∗2 , χ−e∗1+2e∗2 ]
χ3e∗2 = C[Sσ]χe∗2 ,

so we find Spec(C[ZSσ]) = (Uσ)χe∗2
∼= V(xz− y2)y. All points of V(xz− y2) with y 6= 0

also have x, z 6= 0, since xz = y2 for points on Uσ. Thus we have the torus

T = Spec(C[ZSσ]) ∼=
{
(x, y, x−1y2)

∣∣∣ x, y ∈ C∗
}
⊆ V(xz− y2) ⊆ C3,

which is isomorphic to (C∗)2 by (x, y) 7→ (x, y, x−1y2). ♦
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1.6 Faces of Cones and Zariski Open Subsets

Definition 1.19. Let σ ⊆ NR be a convex polyhedral cone. Given m ∈ MR we define the
hyperplane and half-space

Hm = { u ∈ NR | 〈m, u〉 = 0} ⊆ NR,

H+
m = { u ∈ NR | 〈m, u〉 ≥ 0} ⊆ NR.

If σ ⊆ H+
m we call Hm a supporting hyperplane of σ. This happens if and only if m ∈ σ∨.

Note that we allow m = 0, so we have a degenerate supporting hyperplane H0 = NR.

Definition 1.20. A face of a cone σ is a subset given as τ = σ ∩ Hm for some supporting
hyperplane Hm. In this case we write τ � σ.

Proposition 1.21. If τ = σ ∩ Hm is a face of the cone σ = Cone(u1, . . . , uk), we have
τ = Cone(ui : ui ∈ Hm), so every face of a cone is a cone itself.

Proof. We have Cone(ui : ui ∈ Hm) ⊆ τ = σ ∩ Hm, since Hm is a subspace. Now
consider any u ∈ τ, so u = ∑k

i=1 riui and 〈m, u〉 = 0. Since m ∈ σ∨, we have 〈m, ui〉 ≥ 0
for all i. Thus,

0 = 〈m, u〉 =
k

∑
i=1

ri〈m, ui〉

where all ri ≥ 0 and all 〈m, ui〉 ≥ 0. We conclude that ri = 0, whenever 〈m, ui〉 > 0,
which is equivalent to ui /∈ Hm. Therefore u = ∑ui∈Hm

riui as desired.

If σ is rational, every face τ = σ ∩ Hm is given by some m ∈ Sσ = σ∨ ∩ M, since all
we need is that 〈m, ui〉 vanishes whenever ui ∈ τ and is strictly positive when ui /∈ τ.
Having all ui rational, we can choose m rational as well.

Proposition 1.22. Let τ = σ ∩ Hm be a face of a rational convex polyhedral cone σ ⊆ NR

given by m ∈ Sσ. Then the affine toric variety Uτ is the Zariski open subset (Uσ)χm of Uσ.

Proof. From τ = σ ∩ Hm we obtain the dual cone τ∨ = Cone(σ∨ ∪ {−m}), since adding
−m to σ∨ has the effect of intersecting σ with the half-space H+

−m, which is the same as

18
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intersecting with Hm since σ ⊆ H+
m . Thus, we have Sτ = τ∨ ∩M = Sσ + Z(−m) and

the coordinate ring is the localization

C[Sτ] = C[Sσ + Z(−m)] = C[Sσ][χ
−m] = C[Sσ]χm .

Therefore, by Proposition 1.17,

Uτ = Spec(C[Sτ]) = Spec(C[Sσ]χm) = (Uσ)χm .

Example 1.23. Let N = Z3 and consider the cone σ = Cone(e1 , e2 , e1 + e3 , e2 + e3) in
NR = R3. By describing σ as the intersection of four half-spaces given by its facets, we
obtain the dual cone σ∨ = Cone(e∗1 , e∗2 , e∗3 , e∗1 + e∗2 − e∗3) ⊆ R3, as shown in Figure 1.4.

e2

e1

e2 + e3

e1 + e3 σ

τ

e∗2

e∗1

e∗3

e∗1 + e∗2 − e∗3

σ∨

Figure 1.4: The cone σ = Cone(e1 , e2 , e1 + e3 , e2 + e3) ⊆ R3 and its dual.

The semigroup Sσ = σ∨ ∩Z3 is generated by e∗1 , e∗2 , e∗3 and e∗1 + e∗2 − e∗3 , so we obtain the
semigroup algebra

C[Sσ] = C[χe∗1 , χe∗2 , χe∗3 , χe∗1+e∗2−e∗3 ] ∼= C[x, y, z, xyz−1] ∼= C[x, y, z, w]/〈xy− zw〉.

We conclude that Uσ = Spec(C[Sσ]) is isomorphic to V(xy− zw) ⊆ C4.

The face τ = Cone(e1 + e3 , e2 + e3) (marked red in Figure 1.4) is obtained as τ = σ∩ Hm

for m = e∗1 + e∗2 − e∗3 ∈ Sσ, so the associated affine toric variety Uτ is the Zariski open
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subset (Uσ)χe∗1+e∗2−e∗3 , which is isomorphic to

V(xy− zw)w =
{
(x, y, z, w) ∈ C4

∣∣∣ xy = zw, w 6= 0
}

. ♦

Strong Convexity. We know from Remark 1.18 that a toric variety Spec(C[S]) always
contains the torus Spec(C[ZS]) as a Zariski open subset. The dimension of this torus
is given by the rank of ZS, which might be different from the rank of the lattice M
containing S in general. If we want the contained torus to have the dimension given by
the rank of M, we need ZS = M. For arbitrary finitely generated semigroups S ⊆ M
this condition is equivalent to S containing a basis of M. However, if S = Sσ is given by
a rational cone σ ⊆ NR, this condition is equivalent to σ being strongly convex, which
means that {0} is a face of σ or equivalently, σ contains no positive dimensional subspace
of NR.

Proposition 1.24. Let σ ⊆ NR
∼= Rn be a rational convex polyhedral cone with semigroup

Sσ = σ∨ ∩M. Then ZSσ = M if and only if σ is a strongly convex cone. In this case the torus
of Uσ has dimension n, the rank of the lattices N and M.

Proof. Let σ ⊆ NR be strongly convex, then τ = {0} is a face of σ, so τ = σ ∩ Hm

for some m ∈ Sσ. Since τ∨ = MR we have Sσ + Z(−m) = Sτ = τ∨ ∩ M = M, so
ZSσ = M. Conversely, if ZSσ = M, we know that Sσ contains a basis m1, . . . , mn

of M. Let m = m1 + · · · + mn, then σ ∩ Hm = {0}, since any u ∈ σ ∩ Hm satisfies
0 = 〈m, u〉 = ∑n

i=1〈mi, u〉, where all 〈mi, u〉 ≥ 0, so in fact all 〈mi, u〉 = 0 and thus u = 0
since m1, . . . , mn is a basis of MR.

For a strongly convex rational polyhedral cone σ ⊆ NR, the edges are always rays,
since σ contains no 1-dimensional subspace. Along each ray ρ � σ, there is a unique
uρ ∈ ρ ∩ N that generates the semigroup ρ ∩ N. The collection of all uρ, where ρ

ranges over the edges of σ, is called the collection of minimal ray generators of σ. In fact,
σ = Cone(uρ1 , . . . , uρr), so the minimal ray generators always generate σ as a cone (see
[CLS11, Lemma 1.2.15]).
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1.7 Toric Varieties from Polyhedral Fans

In order to glue affine toric varieties along the Zariski open subsets corresponding to
faces of the underlying cones, we need a general construction of gluing affine varieties
along Zariski open subsets.

Definition 1.25. An abstract variety is given by a finite family (Vα)α∈I of affine varieties,
Zariski open sets Vβα ⊆ Vα for all pairs α, β ∈ I and isomorphisms gβα : Vβα → Vαβ,
satisfying the following conditions:

(a) For every pair α, β ∈ I the isomorphisms gαβ and gβα are mutually inverse.

(b) For all α, β, γ ∈ I we have gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ and gγα = gγβ ◦ gβα on
Vβα ∩Vγα.

These conditions give an equivalence relation on the disjoint union äα∈I Vα by letting
a ∼ b if and only if a ∈ Vβα, b ∈ Vαβ and gβα(a) = b for some α, β ∈ I. The abstract
variety given by this data is the quotient space

X = ä
α∈I

Vα

/
∼.

Abstract varieties have a standard and a Zariski topology, obtained by equipping each
Vα with the standard or Zariski topology, respectively. The images of the affine varieties
Vα in the quotient X are called the affine charts of the abstract variety X.

Remark 1.26. In order to determine if two abstract varieties are isomorphic, we would
need some definition of morphisms between abstract varieties. Defining those mor-
phisms properly involves rings of regular functions and sheaves, that describe what kind
of maps correspond to our polynomial maps in the affine setting, where the coordinate
ring encoded this information. For a proper definition see [CLS11, § 3.0]. Since we are
more concerned with topological features like cohomology in this thesis, we skip this
definition and instead give correspondences of affine charts whenever we mention an
isomorphism of abstract varieties.

Example 1.27. Let V1 and V2 be two copies of C and define the Zariski open subsets
V21 = C∗ ⊆ V1, V12 = C∗ ⊆ V2. Consider the isomorphisms C∗ → C∗ given by g : z 7→ z
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and g̃ : z 7→ 1/z. Gluing V1 and V2 along g, we obtain the abstract variety Xg, which
might be described as the complex line with two origins, since all other points of the
two copies have been identified. Gluing along g̃, we obtain a different abstract variety
Xg̃, which is isomorphic to CP1, since the gluing exactly mimics how the two charts
{[1 : z] | z ∈ C} and {[z : 1] | z ∈ C} intersect in CP1. ♦

Remark 1.28. Some authors call the object defined in Definition 1.25 a prevariety and
require abstract varieties to be separated, which is equivalent to being Hausdorff with
respect to the standard topology. In this terminology, the complex line with two origins
is a non-separated prevariety. We will not make this distinction, since all toric varieties
obtained from polyhedral fans are separated (see [CLS11, Theorem 3.1.5]).

Since faces of cones correspond to Zariski open subsets of the associated affine toric
varieties, we can glue affine toric varieties Uσ1 and Uσ2 that are given by cones σ1 and
σ2 intersecting in a common face σ1 ∩ σ2 along Uσ1∩σ2 . The structure needed to obtain a
toric variety in this way is a fan.

Definition 1.29. A rational polyhedral fan (or just fan) Σ in NR for a lattice N ∼= Zn is a
finite collection of cones σ ⊆ NR satisfying the following conditions:

(a) Every σ ∈ Σ is a strongly convex rational polyhedral cone.

(b) For σ ∈ Σ and τ � σ, we have τ ∈ Σ.

(c) For σ1, σ2 ∈ Σ, we have σ1 ∩ σ2 � σ1, σ2.

The k-dimensional cones in Σ form a subset Σ(k) ⊆ Σ. In particular, since every cone
is strongly convex, Σ(1) is a set of rays. The fan Σ is called complete, if every u ∈ NR is
contained in some σ ∈ Σ.

Definition 1.30. Given a rational polyhedral fan Σ, the family of affine toric varieties
(Uσ)σ∈Σ and Zariski open subsets Uσ2,σ1 = Uσ1∩σ2 ⊆ Uσ1 with the obvious isomorphisms
Uσ1,σ2

∼= Uσ2,σ1 define an abstract variety called the toric variety XΣ.

The condition of strong convexity in Definition 1.29 guarantees that all of the glued
affine toric varieties Uσ contain the same torus U{0} = Spec(C[M]), which is identified
to a single torus in XΣ. The other two conditions establish the gluing conditions needed
to construct an abstract variety.
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Remark 1.31. As in the case of affine toric varieties in Remark 1.14, toric varieties can
also be defined using embedded tori and their actions on the abstract variety (see [CLS11,
Definition 3.1.1]). Similar to the affine case, toric varieties defined this way will not
always come from a fan. Again the toric varieties obtained from rational polyhedral fans
are exactly the normal toric varieties.

Example 1.32. Let N = Z2 and consider the fan Σ given by the cones σ1 = Cone(e1 , e2),
σ2 = Cone(e1 , −e1 − e2), σ3 = Cone(e2 , −e1 − e2) and all of their faces. Describ-
ing the cones as intersections of half-spaces we obtain the dual cones from the in-
ward pointing normal vectors as σ∨1 = Cone(e∗1 , e∗2), σ∨2 = Cone(e∗1 − e∗2 , −e∗2) and
σ∨3 = Cone(e∗2 − e∗1 , −e∗1), as illustrated in Figure 1.5.

e2

e1
−e1 − e2

σ1

σ2

σ3

e∗2

−e∗2

e∗1−e∗1

σ∨1

σ∨2

σ∨3

Figure 1.5: The fan Σ of CP2 and the duals of its maximal cones.

Note that we only need to glue Uσ1 , Uσ2 and Uσ3 along their common Zariski open
subsets to obtain XΣ, since all other cones in Σ are faces of these three cones and the
corresponding affine toric varieties will be glued in as already existing Zariski open
subsets.

Let us calculate the three semigroup algebras to obtain the affine charts of XΣ.

C[Sσ1 ] = C[χe∗1 , χe∗2 ] ∼= C[x1, y1] =⇒ Uσ1 = Spec(C[Sσ1 ])
∼= C2,

C[Sσ2 ] = C[χe∗1−e∗2 , χ−e∗2 ] ∼= C[x2, y2] =⇒ Uσ2 = Spec(C[Sσ2 ])
∼= C2,

C[Sσ3 ] = C[χe∗2−e∗1 , χ−e∗1 ] ∼= C[x3, y3] =⇒ Uσ3 = Spec(C[Sσ3 ])
∼= C2.
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For each cone, the two generators already generate the semigroup and since they form
a basis of M in each case, there are no linear relations, so the ideal from Proposi-
tion 1.15 is trivial. We chose C-algebra isomorphism given by x1, y1 7→ χe∗1 , χe∗2 for C[Sσ1 ],
x2, y2 7→ χe∗1−e∗2 , χ−e∗2 for C[Sσ2 ] and x3, y3 7→ χe∗2−e∗1 , χ−e∗1 for C[Sσ3 ] to keep track of the
coordinates in the three copies of C2.

The affine charts Uσ1 and Uσ2 are glued along Uσ1∩σ2 , where σ1 ∩ σ2 = Cone(e1) with dual
(σ1 ∩ σ2)∨ = Cone(e∗1 , e∗2 , −e∗2) and semigroup algebra C[χe∗1 , χe∗2 , χ−e∗2 ]. Expressing
this semigroup algebra as a localization of the semigroup algebras of σ1 and σ2 using
σ1 ∩ σ2 = σ1 ∩ He∗2 = σ2 ∩ H−e∗2 , we find the Zariski open subsets that need to be glued.

C[Sσ1∩σ2 ] = C[χe∗1 , χe∗2 , χ−e∗2 ]

= C[Sσ1 ]χe∗2
∼= C[x1, y1]y1

= C[Sσ2 ]χ−e∗2
∼= C[x2, y2]y2 .

Thus, the Zariski open subset is C×C∗ given by y1 6= 0 for Uσ1 and y2 6= 0 for Uσ2 . We
need to identify (x1, y1) ∈ C2 ∼= Uσ1 with (x2, y2) ∈ C2 ∼= Uσ2 whenever y1, y2 6= 0 and
x2 = x1y−1

1 , y2 = y−1
1 , obtained from χe∗1−e∗2 = χe∗1 (χe∗2 )−1 and χ−e∗2 = (χe∗2 )−1 under the

chosen isomorphisms. The gluing rules for Uσ1 , Uσ3 and Uσ2 , Uσ3 are obtained similarly
and reveal that XΣ is isomorphic to CP2, where the three affine charts of XΣ correspond
to the three charts (x1 : y1 : 1), (x2 : 1 : y2) and (1 : x3 : y3) in CP2. ♦
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2 Combinatorial Chow Rings

In this chapter we define and study combinatorial Chow rings of simplicial fans. As
we will see in Chapter 3, these rings appear as cohomology rings of the associated toric
varieties in some cases. The goal of this chapter is to understand the linear structure of
the combinatorial Chow ring of a fan Σ without referring to the associated toric variety
XΣ. Hence, we restrict ourselves to algebraic and combinatorial tools to obtain results
depending only on the immediate features of the fan Σ.

2.1 Abstract Simplicial Complexes of Simplicial Fans

We have seen in Proposition 1.21, that every face of a cone is given by a subset of its
generators. We now define a class of cones where the converse, Proposition 2.2, holds as
well.

Definition 2.1. Let σ ⊆ NR be a strongly convex rational polyhedral cone. The cone σ is
simplicial if its minimal ray generators are linearly independent over R. If the minimal
ray generators form part of a Z-basis of M, we say σ is smooth or unimodular. In particular,
every smooth cone is simplicial.

Proposition 2.2. Let σ = Cone(u1, . . . , uk) ⊆ NR be a simplicial cone, then the cones
Cone(R) for R ⊆ {u1, . . . , uk} are the faces of σ.

Proof. Let τ = σ ∩ Hm be a face of σ, given by some m ∈ σ∨. By Proposition 1.21 we
know that τ = Cone ( ui : ui ∈ Hm ). Thus, all faces of σ are given as Cone(R) for some
R ⊆ {u1, . . . , uk}.
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Since u1, . . . , uk are linearly independent, we can extend to a basis u1, . . . , un of NR

with the dual basis u∗1 , . . . , u∗n of MR. Now given any subset R ⊆ {u1, . . . , uk}, let
m = ∑ui /∈R u∗i . From Proposition 1.21 we have σ ∩ Hm = Cone(ui : i ≤ k, ui ∈ Hm),
where ui ∈ Hm is equivalent to i ∈ R by the choice of m and 〈u∗i , uj〉 = δij. Thus
Cone(R) = σ ∩ Hm is a face of σ.

The notions of being simplicial or smooth can be extended to fans.

Definition 2.3. A fan Σ in NR is simplicial if all of its cones are simplicial. The fan is
smooth or unimodular, if all of its cones are smooth.

Since the faces of simplicial cones are given by subsets of its minimal ray generators,
we can associate an abstract simplicial complex to a simplicial fan. Before we do that,
we give a proper definition of abstract simplicial complexes and some of their proper-
ties.

Definition 2.4. An abstract simplicial complex ∆ on a finite vertex set V is a collection of
subsets of V, such that A ⊆ B ∈ ∆ implies A ∈ ∆. The elements of ∆ are called faces and
the dimension of a face F ∈ ∆ is dim F = |F| − 1. The dimension of a non-empty abstract
simplicial complex ∆ is dim ∆ = maxF∈∆ dim F. The inclusionwise maximal faces are
called facets and ∆ is called d-pure if all facets are of equal dimension d.

Proposition 2.5. Let Σ be a simplicial fan in NR with rays Σ(1) = {ρ1, . . . , ρr} and minimal
ray generators VΣ = {u1, . . . , ur} ⊆ N, then

∆(Σ) = {R ⊆ VΣ |Cone(R) ∈ Σ}

is an abstract simplicial complex with vertices VΣ and faces corresponding to the cones in Σ.

Proof. By definition, the elements of ∆(Σ) are subsets of VΣ. Now let R ∈ ∆(Σ), then
Cone(R) is a simplicial cone in Σ, thus by Proposition 2.2 all Cone(R′) for R′ ⊆ R are
faces of Cone(R), hence in the fan Σ, so R′ ∈ ∆(Σ).
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2.2 Combinatorial Chow Rings

Now that we understand the structure of simplicial fans, we can define the combi-
natorial Chow ring. The definition we give is the same as Ewald’s definition of the
combinatorial Chow ring in [Ewa96, Chapter VII Definition 5.1] for complete smooth
fans, leaving out the assumption of completeness and weakening smoothness to simpli-
ciality.

Definition 2.6. Let Σ be a simplicial fan in NR. Fix a numbering ρ1, . . . , ρr of the rays
in Σ(1) with minimal ray generators u1, . . . , ur ∈ N. For every ray ρi introduce a formal
variable Xi. For every cone σ = Cone(ui1 , . . . , uis) with 1 ≤ i1 < · · · < is ≤ r define
the square-free monomial Pσ = Xi1 · · ·Xis ∈ Z[X1, . . . , Xr]. In this polynomial ring, we
define the ideals

I = 〈 Pσ | σ /∈ Σ 〉 ,

J = 〈 〈m, u1〉X1 + · · ·+ 〈m, ur〉Xr |m ∈ M 〉 .

The combinatorial Chow ring of Σ is defined as R(Σ) = Z[X1, . . . , Xr]/(I + J ). For
convenience, we define xi = [Xi] ∈ R(Σ) for i = 1, . . . , r and pσ = [Pσ] ∈ R(Σ).
Considering I and J as ideals in Q[X1, . . . , Xr] we define the rational combinatorial Chow
ring of Σ asRQ(Σ) = Q[X1, . . . , Xr]/(I + J ) = R(Σ)⊗Q.

Remark 2.7. In the definition of I it is enough to consider all minimal non-cones of Σ, i.e.
cones Cone(R) /∈ Σ for R ⊆ {u1, . . . , ur} such that Cone(R′) ∈ Σ for all R′ ( R. In the
definition of J it is enough to choose a basis m1, . . . , mn of M and let J be generated by
the ∑r

i=1〈mj, ui〉Xi for j = 1, . . . , n.

Remark 2.8. The combinatorial Chow ring of a simplicial fan Σ is closely related to
the Stanley-Reisner ring or face ring of the associated simplicial complex ∆(Σ), denoted
by k[∆(Σ)], obtained as the quotient of the polynomial ring k[X1, . . . , Xr] over a field
k, by the Stanley-Reisner ideal I defined as in Definition 2.6. We see that the ideal I
only depends on the combinatorial structure of Σ that is captured in ∆(Σ), while the
additional ideal J encodes information of the coordinates of the ray generators. Stanley-
Reisner rings of abstract simplicial complexes have been studied in detail, see [Sta96,
Chapter II].
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A very useful lemma for studying the combinatorial Chow ring is the following shifting
lemma. It is a generalization of [Ewa96, Chapter VII Lemma 5.3] to non-complete fans
and at the same time slightly stronger by allowing only σj above τ.

Lemma 2.9. Let Σ be a smooth fan in NR. If τ ≺ σ � σ′ ∈ Σ, then there exist cones σj ∈ Σ
with dim σj = dim σ and integers cj for j = 1, . . . , q, such that τ ≺ σj � σ′ and

pσ = c1 pσ1 + · · ·+ cq pσq ∈ R(Σ).

Proof. Let n be the rank of M. Fix a numbering of the minimal ray generators of Σ
such that σ′ = Cone(u1, . . . , ud), σ = Cone(u1, . . . , us) and τ = Cone(uk, . . . , us) for
1 < s ≤ d ≤ n and 0 ≤ s− k + 1 < s, so τ is a proper face of σ, allowing τ = {0} when
k = s + 1. Since Σ is smooth, we can extend u1, . . . , ud to a Z-basis v1, . . . , vn of N, where
vi = ui for i = 1, . . . , d. This yields a dual basis v∗1 , . . . , v∗n of M. In particular, for m = v∗1
we obtain

〈v∗1 , u1〉x1 + · · ·+ 〈v∗1 , ur〉xr = 0.

Since vi = ui for i = 1, . . . , d we have 〈v∗1 , u1〉 = 1 and 〈v∗1 , ui〉 = 0 for i = 2, . . . , d.
Hence,

x1 = −〈v∗1 , ud+1〉xd+1 − · · · − 〈v∗1 , ur〉xr.

Substituting into pσ gives

pσ = x1 · · · xs = (−〈v∗1 , ud+1〉xd+1 − · · · − 〈v∗1 , ur〉xr)x2 · · · xs

= cd+1xd+1x2 · · · xs + · · ·+ crxrx2 · · · xs

= cd+1 pσd+1 + · · ·+ cr pσr ,

with ci = −〈v∗1 , ui〉 and σi = Cone(ui, u2, . . . , us) for i = d + 1, . . . , r. Since every ray
generator of τ is contained in σi, we have τ ≺ σi for i = d + 1, . . . , r. For σi /∈ Σ, we have
pσi = 0, so the corresponding term vanishes. For σi ∈ Σ, we have σi � σ′, since ρi is a
ray of σi but not a ray of σ′.

Remark 2.10. If Σ is only simplicial, we obtain the same result for RQ(Σ): From an
integral basis v1, . . . , vn of NR we get a rational dual basis v∗1 , . . . , v∗n of MR that can be
transformed into an integral basis of MR by scaling. As a result, the coefficients ci are no
longer integral, but still rational.
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2 Combinatorial Chow Rings

The first step in the direction of a linear basis ofR(Σ) is the following theorem, telling
us that the combinatorial Chow ring is linearly generated by square-free monomials.
This theorem also appears as [Ewa96, Chapter IV Theorem 5.5]. The proof given by
Ewald holds in the non-complete case as well.

Theorem 2.11. Let Σ be a smooth fan in NR
∼= Rn and R(s)(Σ) be the subgroup of R(Σ)

generated by the square-free monomials of degree s. ThenR(Σ) decomposes as a graded ring

R(Σ) = R(0)(Σ)⊕ · · · ⊕R(n)(Σ).

Proof. We start by showing that every monomial xr1
i1
· · · xrt

it
∈ R(Σ) can be expressed as a

linear combination of square-free monomials of the same degree. If the largest exponent
is 1, the monomial is already square-free. Otherwise, without loss of generality, r1 > 1 is
the largest exponent. If σ = Cone(ui1 , . . . , uit) /∈ Σ, the monomial is zero. If σ ∈ Σ, we
apply Lemma 2.9 for {0} ≺ ρi1 � σ to obtain

xr1
i1
· · · xrt

it
= xi1 xr1−1

i1
· · · xrt

it
= (c1xj1 + · · ·+ cqxjq)xr1−1

i1
· · · xrt

it

= c1xj1 xr1−1
i1
· · · xrt

it
+ · · ·+ cqxjq xr1−1

i1
· · · xrt

it
,

where all ρjk � σ, so xjk /∈ {xi1 , . . . , xit}. Applying the Lemma for all xik with rk = r1, we
reduce the largest exponent to r1 − 1. By induction, we obtain an expression of xr1

i1
· · · xrt

it

as a linear combination of square-free monomials of the same degree. Since I and J are
homogeneous ideals, the standard grading of Z[X1, . . . , Xr] induces the desired grading
onR(Σ).

Remark 2.12. If Σ is only simplicial, the same decomposition into subgroups gener-
ated by square-free monomials of the same degree holds for RQ(Σ), by applying the
simplicial version of Lemma 2.9 mentioned in Remark 2.10.

2.3 Products of Fans

At this point, we make a digression from our way to a linear basis of R(Σ) to study
combinatorial Chow rings of products of fans. The connections between combinatorial
Chow rings and Stanley-Reisner rings and between products of simplicial fans and
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2 Combinatorial Chow Rings

joins of abstract simplicial complexes suggest, how the combinatorial Chow ring should
behave under taking products. We use this as a sanity check for our general definition of
combinatorial Chow rings.

Definition 2.13. Let Σ1, Σ2 be fans in (N1)R and (N2)R, respectively. The product fan
Σ1 × Σ2 is the fan in (N1)R × (N2)R = (N1 × N2)R with cones σ1 × σ2 for σ1 ∈ Σ1 and
σ2 ∈ Σ2.

Assuming Σ1 and Σ2 are simplicial, we can translate the product construction to the
associated abstract simplicial complexes. We see that

∆(Σ1 × Σ2) = { R ∪ S ⊆ VΣ1 ∪VΣ2 | R ∈ ∆(Σ1), S ∈ ∆(Σ2) } = ∆(Σ1) ∗ ∆(Σ2),

which is the join of the abstract simplicial complexes ∆(Σ1) and ∆(Σ2). For Stanley-
Reisner rings it holds that k[∆1 ∗ ∆2] = k[∆1] ⊗k k[∆2], thus it is to be expected that
R(Σ1 × Σ2) behaves similarly.

Proposition 2.14. Let Σ1, Σ2 be simplicial fans in (N1)R and (N2)R. There is a natural ring
isomorphismR(Σ1 × Σ2) ∼= R(Σ1)⊗ZR(Σ2).

Proof. Let ρ1, . . . , ρr1 be the rays of Σ1 with minimal generators u1, . . . , ur1 and τ1, . . . , τr2

the rays of Σ2 with minimal generators v1, . . . , vr2 . We have

R(Σ1) = Z[X1, . . . , Xr1 ]/(I1 + J1),

R(Σ2) = Z[Y1, . . . , Yr2 ]/(I2 + J2).

The tensor product R(Σ1) ⊗Z R(Σ2) is naturally isomorphic to the quotient of the
polynomial ring Z[X1, . . . , Xr1 , Y1, . . . , Yr2 ] by the corresponding ideal extension I1 +

J1 + I2 + J2.

The rays of Σ1 × Σ2 are ρi × {0} for i = 1, . . . , r1 and {0} × τj for j = 1, . . . , r2, so

R(Σ1 × Σ2) = Z[X1, . . . , Xr1 , Y1, . . . , Yr2 ]/(I + J ).

Thus, all we need to verify is I + J = I1 + J1 + I2 + J2. Let Pσ1×σ2 ∈ I , so that
σ1 × σ2 /∈ Σ1 × Σ2. This only happens when σ1 /∈ Σ1 or σ2 /∈ Σ2. Without loss of
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2 Combinatorial Chow Rings

generality, assume σ1 /∈ Σ1 so that Pσ1 ∈ I1. Since Pσ1×σ2 = Pσ1 Pσ2 , it follows that
Pσ1×σ2 ∈ I1. Let (m1, m2) ∈ M1 ×M2 give a generator of J . We have

r1

∑
i=1

〈
(m1, m2), (u1, 0)

〉
Xi +

r2

∑
j=1

〈
(m1, m2), (0, u2)

〉
Yj =

r1

∑
i=1
〈m1, u1〉Xi︸ ︷︷ ︸
∈J1

+
r2

∑
j=1
〈m2, u2〉Yr︸ ︷︷ ︸
∈J2

.

Therefore, we have shown that I + J ⊆ I1 + J1 + I2 + J2. For the other inclusion, we
notice that Pσ1 = Pσ1×{0}, so that I1 ⊆ I since σ1 /∈ Σ1 implies σ1 × {0} /∈ Σ1 × Σ2. By
the same argument I2 ⊆ I . From the equation above we see that J1,J2 ⊆ J by letting
m2 = 0 and m1 = 0, respectively.

2.4 Shellability

The property of Σ that will make our construction of a linear basis forR(Σ) work is the
notion of shellability. We define shellability of abstract simplicial complexes as in [BW96]
and note an important lemma that characterizes shellability by a way of partitioning the
complex.

For any sets A ⊆ B in an abstract simplicial complex, the Boolean interval from A to
B is the set of all C such that A ⊆ C ⊆ B, denoted [A, B]. For any set A we define
A = [∅, A].

Definition 2.15. An abstract simplicial complex ∆ is shellable if its facets can be arranged
in a linear order F1, F2, . . . Ft, such that the subcomplex

(⋃k−1
i=1 Fi

)
∩ Fk is pure of dimen-

sion dim Fk − 1 for all k = 2, . . . , t. An ordering of the facets satisfying this condition is
called a shelling or shelling order of ∆.

The restriction map R : {F1, F2, . . . , Fn} → ∆ is defined by

R(Fk) =

{
v ∈ Fk

∣∣∣∣∣ Fk \ {v} ∈
k−1⋃
i=1

Fi

}
.

Björner and Wachs showed that shellability is equivalent to being able to partition the
complex into Boolean intervals, where the partition has to satisfy an additional ordering
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2 Combinatorial Chow Rings

condition. Abstract simplicial complex that allow a partition into Boolean intervals are
called partitionable. Thus, every shellable complex is partitionable, but the converse does
not hold.

Proposition 2.16 ([BW96, Proposition 2.5]). Let F1, F2, . . . , Ft be an ordering of the facets of
an abstract simplicial complex ∆ and R : {F1, F2, . . . , Ft} → ∆ a map. Then F1, F2, . . . , Ft is a
shelling with restriction map R if and only if ∆ =

⋃· t
i=1[R(Fi), Fi] and R(Fi) ⊆ Fj implies i ≤ j

for all i, j.

We will refer to the partition ∆ =
⋃· t

i=1[R(Fi), Fi] induced by a shelling of ∆ with restric-
tion map R as a shelling partition.

The notion of shellability can be directly transferred to simplicial fans.

Definition 2.17. A simplicial fan Σ in NR is shellable if the associated abstract simplicial
complex ∆(Σ) is shellable. An ordering of the maximal cones of Σ inducing a shelling of
∆(Σ) is a shelling of Σ.

2.5 Linear Generators in the Shellable Case

We now know all the properties of the combinatorial Chow ring and shellability that
allow us to formulate a linear generating set ofR(Σ) that is the candidate for the linear
basis we are looking for.

Theorem 2.18. Let Σ be a smooth shellable fan in NR with shelling order σ1, . . . , σt. Then the
monomials pR(σi) belonging to the restrictions of the σi generateR(Σ) as an abelian group.

Proof. Let σ1 . . . , σt be a shelling order of Σ. By Proposition 2.16 we have

Σ =
t⋃
·

i=1

[R(σi), σi] , such that R(σi) � σj implies i ≤ j,

where [τ, σ] denotes the set of all cones σ′ with τ � σ′ � σ.

We will use backwards induction on the shelling order to show that every pσ with
σ ∈ [R(σi), σi] can be expressed as a linear combination of the restrictions pR(σj) for j ≥ i.
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For i = t consider R(σt) ≺ σ � σt. Applying Lemma 2.9 we have

pσ = c1 pσ̃1 + · · ·+ cq pσ̃q ,

where R(σt) ≺ σ̃j � σt for j = 1, . . . , q. Since [R(σt), σt] is the last interval in the shelling
of Σ, there are no cones above R(σt), that aren’t faces of σt, thus pσ = 0.

For i < l and R(σi) ≺ σ � σi, we apply the shifting lemma to obtain pσ as a linear
combination of some pσ̃j with R(σi) ≺ σ̃j � σi. Every σ̃j is contained in an interval
[R(σk), σk] for some k > i, since R(σi) ≺ σ̃j � σk and σ̃j /∈ [R(σi), σi]. Thus, by induction,
all pσ̃j are linear combinations of monomials given by restrictions.

After t steps we reach i = 1 which finishes the proof, since all intervals have been
covered.

Example 2.19. Consider the fan Σ in R2 with XΣ
∼= CP2 from Example 1.32. The ray

generators of Σ are u1 = e1, u2 = e2 and u3 = −e1 − e2. Identifying cones in Σ with
subsets of {1, 2, 3}, we obtain the face poset of Σ as shown in Figure 2.1.

12 13 23

1 2 3

∅

Figure 2.1: The face poset of Σ for XΣ
∼= CP2 with shelling partition.

The combinatorial Chow ring of Σ is obtained as

R(Σ) = Z[X1, X2, X3]
/
〈X1X2X3 , X2 − X3 , X1 − X3〉 ∼= Z[X]

/
〈X3〉.

As seen in Figure 2.1, the fan is shellable with shelling order 12, 13, 23. The restrictions
are R(12) = ∅, R(13) = 3 and R(23) = 23 with corresponding monomials p∅ = 1,
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p3 = x and p23 = x2. We see that (1, x, x2) linearly generate R(Σ). In fact, we found a
linear basis of the combinatorial Chow ring. It is no coincidence that Z[X]/〈X3〉 is also
the cohomology ring H∗(CP2). We will come back to this connection in Chapter 3. ♦

Up to dimension 1 we can prove that, as long as Σ is n-pure, the linear generators given by
Theorem 2.18 are linearly independent, as noticed in Example 2.19.

Proposition 2.20. The monomials pR(σi) belonging to the s-dimensional restrictions of the cones
in a shelling order of a smooth, n-pure fan Σ in NR

∼= Rn form a linear basis of R(s)(Σ) for
s = 0, 1.

Proof. The only cone of dimension 0 is {0} = R(σ1). We have p{0} = 1 6= 0 and k · 1 6= 0
in R(Σ) for all k ∈ Z, since there are no relations in degree 0. Hence, R(0)(Σ) = Z

generated by pR(σ1).

For s = 1 order the rays so that σ1 = Cone(u1, . . . , un), since Σ is n-pure. Then
ρn+1, . . . , ρr are all the restrictions of dimension 1. Every linear relation in R(Σ) is
of the form

〈m, u1〉x1 + · · ·+ 〈m, ur〉xr = 0

for some m ∈ M, since sums and integral multiples of the relations in J are obtained
by sums and integral multiples of the corresponding m ∈ M. Thus, if there is a linear
relation involving only xn+1, . . . , xr, it is given by an m ∈ M such that 〈m, ui〉 = 0 for
i = 1, . . . , n. Since σ1 is smooth, the u1, . . . , un form a Z-basis of N, so m = 0 and the
linear combination was trivial.

Remark 2.21. Again, the results of Theorem 2.18 and Proposition 2.20 still hold for
RQ(Σ) when Σ is only simplicial.

We strongly believe that this linear independence holds in higher dimensions as well,
assuming Σ is a smooth, shellable, n-pure fan. In fact, we know it does when Σ is
complete, as will be discussed in Section 3.2. From the algebraic point of view we took
in this chapter, we formulate the following conjecture.

Conjecture 2.22. Let Σ be a smooth, shellable, n-pure fan in NR with shelling order σ1, . . . , σt.
Then the monomials pR(σi) belonging to the restrictions of the σi form a linear basis of R(Σ).
The same holds forRQ(Σ) when Σ is only simplicial.
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2 Combinatorial Chow Rings

We finish the chapter by discussing two more examples: A simplicial shellable fan,
that is neither smooth nor complete to check the linear basis forRQ(Σ), and a smooth
non-shellable fan, where we can still find a basis of the combinatorial Chow ring by
explicit computation.

Example 2.23. Let N = Z2 and Σ be the fan in R2 given by the three maximal cones
σ1 = Cone(e1 , e2), σ2 = Cone(e2 , e2 − e1), σ3 = Cone(e2 − e1 , −e1 − e2), as shown in
Figure 2.2. Note that σ3 is not smooth, since e2 − e1, −e1 − e2 do not generate M.

e2

e1
−e1 − e2

e2 − e1

σ1
σ2

σ3

12 23 34

1 2 3 4

∅

Figure 2.2: The non-smooth, non-complete, simplicial shellable fan Σ and its face poset.

Identifying cones in Σ with subsets of {1, 2, 3, 4} corresponding to the rays given by e1,
e2, e2− e1 and−e1− e2, we find the ordering σ1 = 12, σ2 = 23, σ3 = 34 is a shelling order
with restrictions ∅, 3, 4, as seen in Figure 2.2.

The combinatorial Chow ring is obtained as

R(Σ) = Z[X1, X2, X3, X4]

〈X1X3 , X1X4 , X2X4 , X1 − X3 − X4 , X2 + X3 − X4〉

∼=
Z[X3, X4]〈

X3
2 + X3X4 , X3X4 + X4

2 , X4
2 − X3X4

〉
∼=

Z[X3, X4]〈
X3

2 − X4
2 , 2X4

2 , X2
4 − X3X4

〉 .

We see that x3
2 = x4

2 = x3x4 6= 0, but 2x4
2 = 0 in R(Σ). In particular, the monomials

1, x3 and x4 belonging to the restrictions of the shelling do not generateR(Σ) linearly,
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sinceR(2)(Σ) ∼= Z2 6= 0. However, inRQ(Σ) we get x4
2 = 0 after division by 2, hence

all degree 2 monomials vanish andRQ(Σ) = 〈1, x3, x4〉 has the desired linear basis. ♦

Example 2.24. Let N = Z2 and Σ be the smooth fan in R2 given by the maximal cones
σ1 = Cone(e1 , e2), σ2 = Cone(−e1 , −e2), as shown in Figure 2.3, together with the
non-shellable poset obtained by identifying cones in Σ with subsets of {1, 2, 3, 4} corre-
sponding to the rays given by e1, e2, −e1 and −e2.

e2

e1

−e2

−e1

σ1

σ2

12 34

1 2 3 4

∅

Figure 2.3: The non-shellable, non-complete, smooth fan Σ and its face poset.

The combinatorial Chow ring is obtained as

R(Σ) = Z[X1, X2, X3, X4]

〈X1X3, X1X4, X2X3, X2X4, X1 − X3, X2 − X4〉

∼=
Z[X1, X2]

〈X1
2, X1X2, X2

2〉
,

so all monomials of degree 2 vanish and the monomials 1, x1 and x2 form a linear basis of
R(Σ). Note that we need three generators, despite the fact that Σ has only two maximal
cones.

As discussed in [BM98], the face poset of Σ is the minimal example of a non-shellable
poset. It is a “witness to non-shellability” in the sense that it is contained in every
non-shellable poset as an induced subposet. See [Wac97] for this and a more general
discussion of obstructions to shellability. ♦
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In this final chapter we want to go back to toric geometry and discuss the connection of
our results on the combinatorial Chow ringR(Σ) from Chapter 2 to topological features
of the associated toric variety XΣ.

3.1 Fulton’s Condition is Shellability

In [Ful93, Section 5.2] Fulton establishes a linear basis for the homology groups of a com-
plete smooth toric variety X4 whose underlying fan4 satisfies a certain combinatorial
condition.

For any ordering σ1, . . . , σm of the top-dimensional cones, define a sequence
of subcones τi ⊂ σi, 1 ≤ i ≤ m, by letting τi be the intersection of σi with
all those σj that come after σi (i.e., with j > i) and that meet σi in a cone
of dimension n − 1. [ . . . ] In particular, τ1 = {0}, and τm = σm. The key
assumption that will make this work is:

If τi is contained in σj, then i ≤ j. (∗)

We notice that this condition is half of what we need to identify the ordering as a shelling
with restriction map R(σi) = τi by Proposition 2.16. In fact, Fulton goes on and proves
the following lemma from (∗).

Lemma. (a) For each cone γ in4 there is a unique i = i(γ) such that τi ⊂ γ ⊂ σi.
In fact, i(γ) is the smallest integer i such that σi contains γ.

(b) If γ is a face of γ′, then i(γ) ≤ i(γ′).

This is exactly4 =
⋃· m

i=1[τi, σi]. Thus, Fulton’s lemma shows shellability of4.
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3.2 Homology, Cohomology and Chow Rings

Besides the combinatorial Chow ring discussed in Chapter 2, every algebraic variety X
comes with algebro-geometric Chow groups A∗(X). For every k ≥ 0 the group Ak(X)

is defined as the quotient of the free abelian group generated by the k-dimensional
irreducible closed subvarieties of X modulo rational equivalence (see [Ful98]). As usual,
these groups are put together in an abelian group A∗(X) =

⊕dim X
k=0 Ak(X).

Reading carefully through the proofs in [Ful93, Section 5.2], we verified that after proving
the previous lemma, Fulton never uses (∗) again. Hence, we can extract the following
theorem.

Theorem 3.1 ([Ful93, p. 102, p. 104]). If Σ is a complete smooth shellable fan with shelling
order σ1, . . . , σt, the classes [V(R(σi))] form a basis for A∗(XΣ) ∼= H∗(XΣ). If Σ is only
simplicial, the same is true for A∗(X)Q

∼= H∗(XΣ; Q).

Here A∗(X)Q = A∗(X)⊗Q and V(R(σi)) is a subvariety of XΣ corresponding to the
cone R(σi) called the orbit closure. For a discussion on the correspondence between
subvarieties of XΣ and cones in Σ, see the section on the orbit-cone correspondence in
[CLS11, § 3.2].

By letting Ak(XΣ) = An−k(XΣ) we obtain a graded ring A∗(XΣ) =
⊕

k Ak(X) equipped
with the intersection product, see [Ful93, Section 5.1] or [Dan78, Section 10.7]. Since
XΣ is a smooth orbifold when Σ is complete smooth, we can use Poincaré duality,
so H2k(XΣ) ∼= H2n−2k(XΣ) as abelian groups. When Σ is only simplicial, XΣ is still
rationally smooth, so Poincaré duality holds over Q, see [CLS11, § 12.4]. Thus, the basis
of homology in Theorem 3.1 is also a linear basis of the cohomology ring. This is where
the combinatorial Chow ring enters the stage. Danilov proved the following Theorem in
[Dan78].

Proposition 3.2 ([Dan78, Theorem 10.8]). If Σ is a complete smooth fan, we have ring
isomorphisms A∗(XΣ) ∼= H∗(XΣ) ∼= R(Σ). If Σ is only simplicial, we have A∗(XΣ)Q

∼=
H∗(XΣ; Q) ∼= RQ(Σ).

This implies that Conjecture 2.22 holds when Σ is assumed to be a complete smooth,
respectively simplicial, shellable fan. The idea that motivated the conjecture was to prove
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the basis theorem directly from the combinatorics of Σ, without involving intersection
theory on XΣ. We expect that such an algebraic prove would not depend on Σ being
complete, so we weakened the assumption to n-pureness. The fact that this works out
in dimension 1 is another hint that the conjecture might be true. Note that even if the
conjecture is true, we do not get a cohomology basis for XΣ, since the isomorphism
H∗(XΣ) ∼= R(Σ) depends on the completeness of Σ. To stress this point, we come back
to the non-complete fan from Example 2.24.

Example 2.24 (continuing from p. 36). The fan Σ in R2 with maximal cones the two
quadrants in Figure 2.3 is smooth, 2-pure but not complete. If the isomorphism from
Proposition 3.2 would hold, we would expect H3(XΣ) = 0, since the isomorphism
R(Σ) ∼→ H∗(XΣ) doubles the degree. The two maximal cones of Σ yield two copies of
C2 as affine charts. They are glued along an inclusion of (C∗)2 that identifies (x, y) in
one copy with (x−1, y−1) in the other copy, whenever x, y 6= 0. From this description we
obtain a Mayer-Vietoris exact sequence for cohomology groups, in particular

· · · −→ H2(C2)⊕ H2(C2) −→ H2((C∗)2) −→ H3(XΣ) −→ H3(C2)⊕ H3(C2) −→ · · · .

Since C2 is contractible we get an isomorphism H3(XΣ) ∼= H2((C∗)2). Now (C∗)2 has
the homotopy type of the torus S1 × S1, so H2((C∗)2) ∼= Z. We conclude that H3(XΣ) is
non-zero, so the combinatorial Chow ring is not isomorphic to the cohomology ring. ♦
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